等比数列的求和公式是什么?
等比数列求和公式 1)等比数列:a(n+1)/an=q,
n为自然数。
(2)通项公式:an=a1*q^(n-1);
推广式:
an=am·q^(n-m);
(3)求和公式:Sn=n*a1(q=1)
Sn=a1(1-q^n)/(1-q)
=(a1-a1q^n)/(1-q) =a1/(1-q)-a1/(1-q)*q^n
(
即a-aq^n) (前提:q不等于
1) (4)性质:
①若
m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;
②在等比数列中,依次每
k项之和仍成等比数列.
(5)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(6)在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
等比数列的求和公式是什么?
等比数列的求和公式:Sn=首项(1-公比的n次方)/1-公比(公比≠1) 扩展资料 等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。 若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3…{can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2。 等比数列在生活中也是常常运用的。如:银行有一种支付利息的方式——复利。即把前一期的利息和本金加在一起算作本金,在计算下一期的利息,也就是人们通常说的“利滚利”。按照复利计算本利和的公式:本利和=本金*(1+利率)^存期。 参考资料百度百科-等比数列