有理数的定义
有理数的定义:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数为整数和分数的统称,其中正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。
有理数和无理数的三点不同
一、两者的含义不同:
1、有理数的含义:数学中,有理数是一个整数a和一个正整数b的比,例如3/8,通常为a/b,0也是有理数;
2、无理数的含义:在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字。
二、两者的特征不同:
1、有理数的特征:有理数的小数部分是有限或为无限循环的数;
2、无理数的特征:无理数的小数部分是无限不循环的数。
三、两者的实质不同:
1、有理数的实质:有理数为整数(正整数、0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零;由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数;
2、无理数的实质:无理数是指实数范围内不能表示成两个整数之比的数。简单的说,无理数就是10进制下的无限不循环小数,如圆周率、根号2等。
有理数定义是什么?
有理数的定义为:有理数为整数(正整数、0、负整数)和分数的统称。 正整数和正分数合称为正有理数,负整数和负分数合称为负有理数,因而有理数集的数可分为正有理数、负有理数和零。 有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。 有理数加法的运算法则: 1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。
有理数的定义是什么?
有理数的概念: 有理数为整数(正整数 0、负整数)和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。 一、有理数的定义 有理数有两种分类,分别是正有理数,包括正整数和正分数;负有理数,包括负整数和负分数。 1、正有理数指的是数学术语,除了负数、0、无理数的数字,正有理数能精确地表示为两个整数之比。 2、负有理数就是小于零并能用小数表示的数。如-3、123,-1、、、。 3、有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。 有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。 二、有理数名字的由来 “有理数”这一名称不免叫人费解,有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。有理数一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。中国在近代翻译西方科学著作,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很显豁,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。 三、有理数的认识 由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。 有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。 有理数a,b的大小顺序的规定:如果a-b是正有理数,则称当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。 有理数集与整数集的一个重要区别是,有理数集是稠密的,而整数集是密集的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。 有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。 四、有理数的运算 加法运算 1、同号两数相加,取与加数相同的符号,并把绝对值相加。 2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 3、互为相反数的两数相加得0。 4、一个数同0相加仍得这个数。 5、互为相反数的两个数,可以先相加。 6、符号相同的数可以先相加。 7、分母相同的数可以先相加。 8、几个数相加能得整数的可以先相加。 减法运算 减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。 乘法运算 1、同号得正,异号得负,并把绝对值相乘。 2、任何数与零相乘,都得零。 3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。 4、几个数相乘,有一个因数为零,积就为零。 5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。 除法运算 1、除以一个不等于零的数,等于乘这个数的倒数。 2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。 注意: (1)零不能做除数和分母。 (2)有理数的除法与乘法是互逆运算。 (3)在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。 (4)乘方运算 1、负数的奇数次幂是负数,负数的偶数次幂是正数。例如:(-2)³(-2的3次方)=-8,(-2)²(-2的2次方)=4。 2、正数的任何次幂都是正数,零的任何正数次幂都是零。例如:2(2的2次方)=4,2 (2的3次方)=8,0(0的3次方)=0。 3、零的零次幂无意义。 4、由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成。 5、1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1。 除以零的谬误 在代数运算中不当使用除以零可得出无效证明:a=b。前提a不等于b 由:0a=0,0b=0,得出0a=0b。 两边除以零,得出0a/0=0b/0。 化简,得:a=b。 以上谬论一个假设,就是某数除以0是容许的。
什么叫有理数,有理数的定义
有理数的解释[rational number] 整数和分数(如2/3)的统称 词语分解 有的解释 有 ǒ 存在:有关。 有方 (得法)。有案可稽。有备无患。有目共睹。 表示所属:他有一本书。 表示发生、出现:有病。情况有变化。 表示估量或比较:水有一丈多深。 表示大、多:有学问。 用在某些 动词 前面表示 理数的解释 . 道理 ,事理。 汉 王符 《潜夫论·劝将》:“无士无兵,而欲合战,其败负也,理数也然。”《三国志·蜀志· 关张 马黄等传论》:“ 羽 刚而自矜, 飞 暴而无恩,以短取败,理数之常也。” 姚华 《曲海一勺