根据热力学第二定律

热力学第一定律和第二定律的内容是什么?
热力学第一定律和第二定律的内容是什么?
提示:

热力学第一定律和第二定律的内容是什么?

热力学第一定律(the first law of thermodynamics)是涉及热现象领域内的能量守恒和转化定律,反映了不同形式的能量在传递与转换过程中守恒。 表述为:物体内能的增加等于物体吸收的热量和对物体所作的功的总和。即热量可以从一个物体传递到另一个物体,也可以与机械能或其他能量互相转换,但是在转换过程中,能量的总值保持不变。其推广和本质就是著名的能量守恒定律。 热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为: 热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。 表述形式: 热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 在工程热力学范围内,热力学第一定律可表述为:热能和机械能在转移或转换时,能量的总量必定守恒。 第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用状态函数熵来描述这个差异 以上内容参考 百度百科-热力学第一定律 百度百科-热力学第二定律

热力学第一定律和第二定律的内容
提示:

热力学第一定律和第二定律的内容

热力学第一定律基本内容是,热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。热力学第一定律是能量守恒原理的一种表达方式。热力学第二定律,又称“熵增定律”,表明了在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。

热力学第一定律和第二定律是科学界公认的宇宙普遍规律。能量守恒定律是说,能量可以由一种形式变为另一种形式,但其总量既不能增加也不会减少,是恒定的。二十世纪初爱因斯坦发现能量和质量可以互变后,此定律改为能质守恒定律。这个定律应用到热力学上,就是热力学第一定律。

热力学第二定律是描述热量的传递方向的:分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。此定律的一种常用的表达方式是,每一个自发的物理或化学过程总是向著熵(entropy)增高的方向发展。熵是一种不能转化为功的热能。

而熵的改变量等于热量的改变量除以绝对温度,高、低温度各自集中时,熵值很低;温度均匀扩散时,熵值增高。物体有秩序时,熵值低;物体无序时,熵值便增高。现在整个宇宙正在由有序趋于无序,由有规则趋于无规则,宇宙间熵的总量在增加。

热力学第二定律的实质
提示:

热力学第二定律的实质

热力学第二定律是热力学的基本定律之一,其基本内容为热量不能自发地从低温物体转移到高温物体,实质上就是说热运动过程使不可逆的。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。 热力学第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:可逆绝热过程Sf=Si,不可逆绝热过程Sf>Si,式中Sf和Si分别为系统的最终和最初的熵。 在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的,这个规律叫做熵增加原理,也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。

热力学第二定律公式是什么?
提示:

热力学第二定律公式是什么?

热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。 开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。 第二定律在有限的宏观系统中也要保证如下条件: 1、该系统是线性的。 2、该系统全部是各向同性的。 另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。 热力学第一定律概述 热力学第一定律表述形式:热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。在工程热力学范围内,热力学第一定律可表述为:热能和机械能在转移或转换时,能量的总量必定守恒。 基本内容:热可以转变为功,功也可以转变为热;消耗一定的功必产生一定的热,一定的热消失时,也必产生一定的功。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。这是许多人幻想制造的能不断地作功而无需任何燃料和动力的机器,是能够无中生有、源源不断提供能量的机器。显然,第一类永动机违背能量守恒定律。 以上内容参考:百度百科-热力学第二定律,百度百科-热力学第一定律

热力学第二定律数学表达公式
提示:

热力学第二定律数学表达公式

热力学第二定律的数学表达式是:ds≥δQ/T。 热力学第二定律的表述: 热力学第二定律是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。由于工程实践中热现象普遍存在,热力学第二定律应用范围极为广泛,诸如热量传递、热功互变、化学反应、燃料燃烧、气体扩散、混合、分离、溶解、结晶、辐射、生物化学、生命现象、信息理论、低温物理、气象以及其他许多领域。 热力学第二定律的克劳修斯说法: 1850年,克劳修斯(DudolfClausius)从热量传递方向性的角度提出:热不可能自发地、不付代价地从低温物体传至高温物体。 这里指的是“自发地、不付代价地”。通过热泵装置的逆向循环可以将热量自低温物体传向高温物体,并不违反热力学第二定律,因为它是花了代价而非自发进行的。非自发过程(热量自低温传向高温)的进行,必须同时伴随一个自发过程(机械能转变为热能)作为代价、补充条件,后者称为补偿过程。 热力学第二定律的开尔文说法: 1824年,卡诺(SadiCarnot)最早提出了热能转化为机械能的根本条件:“凡有温度差的地方都能产生动力。”实质上,它是热力学第二定律的一种表达方式。随着蒸汽机的出现,人们在提高热机效率的研究中认识到,只有一个热源的热动力装置是无法工作的, 要使热能连续地转化为机械能至少需要两个(或多于两个)温度不同的热源,通常以大气中的空气或环境温度下的水作为低温热源,另外还需有高于环境温度的高温热源,例如高温烟气。 1851年左右,开尔文(LordKelvin)和普朗克(MaxPlanck)等人从热能转化为机械能的角度先后提出更为严密的表述,被称为热力学第二定律的开尔文说法:不可能制造出从单一热源吸热、使之全部转化为功而不留下其他任何变化的热力发动机。

上一篇:扬州大学荷花池校区

下一篇:没有了

推荐阅读: