数学建模模型解题法

数学建模
数学建模
提示:

数学建模

最近在复习和学习数学建模的东西,主要是《数学建模优秀论文精选与点评(2011-2015)》和《数学建模方法及其应用》两本书,资源在下面。(包括文中出现的一些案例就来源于书中) 个人觉得数学建模是介乎业务模型和数据挖掘之间的东西,既要有将实际问题转化为数学模型的思维,同时在采用的模型、算法方面和数据挖掘有极大的重合。所以对于开拓横向的数据化业务思维、分析能力以及基础的数据挖掘能力都有帮助。 链接: https://pan.baidu.com/s/1U3fI-U3WSFN8Zj02iqLp0w 提取码: fvfy 数学建模方法: 数学建模步骤: 问题分析→模型假设→模型建立→模型求解→解的分析与检验→写作和应用 基础理论: 典型场景 微分方程一般是时间微分方程,微分方程稳定性问题的典型场景是判断博弈过程,判断最终哪一方会赢、哪一方会败,比如下面的战争问题;或者就是消息/疾病随时间传播的过程。 基础理论: 差分只是一个过程变量,既可以求微分,也可以求积分。而且差分方程本身也是需要求解、以及判断稳定性的,但是似乎利用差分方程求解方程本身很少,而利用差分/差商来积分反而更常用 基础理论: 拟合方法: 一般线性最小二乘拟合方法是可以直接求解的,但是非线性最小二乘问题,通常求解很复杂,可以采用梯度法(这个最常用)、共轭梯度法、最速下降法(后两者是求解特殊的正定矩阵)进行求解。。。。 基础理论: 方案层、准则层、决策目标→构造比较矩阵→相对权重向量确定→一致性校验→计算组合权重和组合一致性校验(两层权重的累加) 应用场景: 实际应用应该很广了,发现一个可以用在互联网运营中的: https://www.jianshu.com/p/f4fdf18988cb 基础理论: 采用概率分布: 基础理论: 参数估计: 方差分析: 分为单因素方差分析法和多因素方差分析法。这里只考虑单因素。 相关分析方法: 基础理论: 多元回归方程的显著性校验和拟合校验: 回归模型正交化 正交化的目的只是为了计算,比如自变量有x1,x2和x3=x1*x2,这个时候明知变量中有相关性问题存在,正交化的计算最快。实际应该不会考虑这种情况,反正都是机器跑。 基础理论: 线性规划的求解方法 知己用lingo吧骚年! 线性规划的对偶问题 常用方法 基础理论 无约束规划的解法 有约束非线性规划的解法 我认为真正的动态规划问题,其实是类似于马尔可夫链的那种问题,这里其实没有涉及到这么高深。反而是把本来可以用静态规划方法求解的,转化成动态来求解。 基础理论 XY分布 分布才是排队论的理论核心,在确定了分布之后,你甚至可以直接用蒙特卡洛模拟出排队结果嘛。 二人有限零和对策的基本模型: 二人有限零和对策的混合策略: (双方为了获取更多的利益,会根据概率来博弈) 二人有限非零和对策: 基础理论 在帕累托最优解中,再找最优解 图 : 树 : 遍历 解法 常采用匈牙利算法,暂时不研究。 图矩阵 书中还给出了一个婚配的案例,但是实际上可以直接线性规划求解的。。。线性规划其实适合很多问题,包括上面的决策等等。。。 基础理论 模糊综合评判 总评分法、加权评分法 然后针对多层次模糊综合评判会涉及到一个矩阵的综合加权 典型场景 问题:中介机构有遵纪守法情况、纳税情况、奖惩情况等等维度的情况,建立综合评估问题。 看计算过程,理解起来还是比较简单,最直观的理解就是,比如针对几个指标,分为差、中、好三个等级,隶属度是一个隶属度矩阵,然后最终的展示结果就是经过加权之后的综合向量,比如是0.3,0.3,0.2,那就是经过模糊综合评判,整体属于差、中、好的隶属度分别是多少。 所以模糊综合评判方法最后也只是给你一个隶属于各个等级的隶属度,但如何确定他是好还是差,还是要再加一个指标判断,而综合评判方法给你提供的便利,只是让多级指标汇总而已。。。 模糊综合评判和AHP很大程度上都是解决一类型问题,就看怎么选择。 个人觉得,灰色系统模型的应用场景一般都是用来对时间做回归预测,那还不如直接用回归呢。所以可能灰色系统模型基本不会采用?

数学建模的方法
提示:

数学建模的方法

数学建模的方法如下: 1、类比法 类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系。 在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。 2、量纲分析法 量纲分析法常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化。无量纲化是根据量纲分析思想,恰当地选择特征尺度,将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。 3、图论法 图论方法是数学建模中一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简并用图来描述事物特征及内在联系的过程,也是数学建模的一个必备工具。 图论是研究由线连成的点集的理论,一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。 4、差分法 差分法的数学思想是通过taylor级数展开等方法,把控制方程中的导数,用网格节点上的函数值的差商代替进行离散。 从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。差分法的解题步骤为:建立微分方程,构造差分格式,求解差分方程;精度分析和检验。 5、变分法(使用较少) 变分法用于处理函数的函数的数学领域,即泛函问题,和处理数的函数的普通微积分相对。泛函可以通过未知函数的积分和它的导数来构造,最终寻求的是极值函数。变分问题的求解方法通常有两种:古典变分法和最优控制论。

上一篇:河北教育局开学通知

下一篇:没有了

推荐阅读: