幂函数的形式是什么?
幂函数的形式是:y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。 幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。 幂函数性质: 当α>0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。 当α<0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
幂函数的性质是什么呢
性质: 一、正值性质 当α>0时,幂函数y=xα有下列性质: 1、图像都经过点(1,1)(0,0)。 2、函数的图像在区间[0,+∞)上是增函数。 3、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0(函数值递增)。 二、负值性质 当α<0时,幂函数y=xα有下列性质: 1、图像都通过点(1,1)。 2、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。 幂函数的特性 对于α的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 首先我们知道如果 ,q和p都是整数,则 ,如果q是奇数,函数的定义域是R;如果q是偶数,函数的定义域是[0,+∞)。 当指数α是负整数时,设α=-k,则 ,显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: α小于0时,x不等于0;α的分母为偶数时,x不小于0;α的分母为奇数时,x取R。