神秘的黑洞

什麽是黑洞
什麽是黑洞
提示:

什麽是黑洞

黑洞本质上也是天体。但它是一类特殊的天体。 如果是恒星级黑洞,那黑洞是大质量恒星演化后期,经过超新星爆发的方式快速抛去其外层气体后,经过引力坍缩的恒星核。 知道第二宇宙速度吧?就是从一个星球表面出发,摆脱一个星球的引力,到宇宙空间去所需要的速度,也叫脱离速度或逃逸速度。地球的第二宇宙速度是11.2千米/秒。就是说,如果从地球上发射一个航天器,如果它的速度达到或超过了11.2/秒,它就能摆脱地球的引力,成为一个在太阳系中遨游的航天器了。 不同质量的星球有不同的脱离速度。从万有引力定律就能看出,星球的质量越大,引力越强,摆脱这个星球引力所需要的速度就越高。同时,对于质量相同的星球来说,星球的半径越小,密度越大,引力也越强,表面脱离速度也越高。比如,月球的质量、密度和半径都比地球小,它的逃逸速度就只有2.4千米/秒,而太阳要比地球大得多,所以太阳的逃逸速度高达617.7千米/秒。 宇宙中能够达到的最高速度是光速。早在17世纪,就有欧洲科学家提出,可以设想一种星球,它的质量足够大、引力足够强、半径足够小、密度足够高,使它的表面脱离速度达到光速,那么从这个星球上发出的光线就无法脱离星球表面,跑到星球外边去;外来的任何物质,包括光线也会被这个星球完全吸收,不会有光线反射出来。这时,这个星球不管能发出多强的光,都不可能被看到--它是黑的。 就是说,用牛顿力学解释,黑洞就是表面逃逸速度大于等于光速的天体。 用爱因斯坦相对论来解释,因为质量能够使时空结构变形或扭曲,改变时空的曲率。而黑洞是时空曲率大到自我封闭,使进入的任何物质,包括光都无法从其事件视界逃脱的天体。 上一张图是黑洞的牛顿解释,就是引力能弯曲光线。下一张图是黑洞的爱因斯坦解释,就是黑洞是宇宙中时空弯曲到自我封闭的一个区域。两张图中的各条光线可以一一对应。 一颗恒星要变成一个黑洞,是有条件的。要形成黑洞,其原恒星的质量不能小于7倍太阳质量,并且引力坍缩的恒星核质量不能小于3.4倍太阳质量。 大质量恒星到了演化的晚期,会成为一颗红超巨星。当恒星中的所有核聚变原料都用完时,恒星中的核聚变反应停止,恒星核中全是铁元素,向外阻止恒星收缩的辐射压消失,恒星外面的物质就会向内急剧收缩,在撞到中心的铁核时,由于铁核不能被压缩,这些物质就像是撞到一堵无比坚硬的墙,就会以几乎的速度被反弹出去,反向冲出恒星,好像是恒星发生了一次无比巨大的爆炸一样。这种现象叫超新星爆发。超新星爆发会使恒星损失大部分质量,只剩下少部分的恒星核,在外面物质的撞击能量下继续收缩。此时,如果剩下的恒星核的质量大于3.2倍太阳质量,它就会在引力作用下坍缩为一个密度无限大、尺度无限小的点,这个点叫奇点。由于它的半径是零,而密度又无限大,它的引力就可以强大到连光线都能够吸引住。或者说,它周围的时空已经弯曲到它自身周围,自我封闭了起来,并形成的一个区域,叫视界。任何进入视界的物质和光线都无法再离开,自身发出的光线也无法脱离。这个区域就成为了一个黑洞。 这就是黑洞。 理论上,除了大质量恒星演化到末期能够形成黑洞外,在宇宙大爆炸极早期,物质刚刚形成时,因为物质密度过高,也可能形成一些大小如同一个基本粒子、质量如同一座大山的极小的黑洞,叫量子黑洞。但这种黑洞目前还没有发现。另外就是在星系中心,同样由于物质密度极高,在星系形成时也会在星系中心形成一个极大质量黑洞。例如,在我们银河系中心,就有一个质量为太阳质量400多万倍的超大质量黑洞。大多数星系中心都有这样一个黑洞。

黑洞是什么
提示:

黑洞是什么

对于黑洞是什么呢之话题,我个人的观点认为,天文学家所说的宇宙太空中的黑洞,实际上不只是一个洞,而是存在于宇宙恒星系与恒星系边缘之间呈网状的暗物质运行的宇宙天体。为什么会这样说呢?因为: 宇宙是由数之不尽的恒星系和宇宙之网两部分天体所构成的,数之不尽的恒星系都是由一颗巨大质量和体积的恒星(太阳)所掌控,庞大质量和体积的恒星天体,拥有一个不可视见的巨大的磁场存在,恒星磁场涉足的范围,就是恒星系占领宇宙的空间范围,所有恒星都是同一样的核能物质,其恒星系的边缘从磁性的角度上看都是呈现出同性的物理现象。 因而,宇宙中数之不尽的恒星系与恒星系边缘之间就自然会产生同性相斥的磁性现象,会将处于宇宙之中数之不尽的恒星系分隔开来,形成一个个呈圆形状的独立性的恒星系整体,像是一个个“泡泡”一样悬空地屹立在宇宙无限空间的太空之中。 可以想象到,宇宙数之不尽的恒星系边缘之间的剩余外围空间,就会呈现出网状的自然天体存在,包裹着宇宙所有恒星系的外围空间,这个宇宙无限网状的自然天体,由于每个恒星系之恒星所发出的光和热都无法到达,因而,这个宇宙网状的天体就会漆黑一片,是宇宙暗物质运行无限专属的网状通道。 一方面,能对每个恒星系的同向自转运动起到了变化的缓冲作用;二方面,所有恒星系同步的自转运动,其恒星系边缘的速度奇快,会引发宇宙网状天体产生强大的对流和漩涡物理现象。这个宇宙网状天体可统称之为宇宙之网天体现象(即是目前天文学家所说的“黑洞”现象)。宇宙之网这种强大的对流和漩涡现象,会产生物理透镜现象,因而,任何的光都无法渗透下去。 由此可见,所谓的“黑洞",不单纯是个黑暗的洞,而是存在于宇宙恒星系与恒星系边缘之间呈网状的暗物质运行的宇宙天体,这个呈网状的宇宙天体可统称之为宇宙之网天体现象。

神奇的黑洞
提示:

神奇的黑洞

黑洞是一种引力极强的天体,就连光也不能逃脱.当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了.这时恒星就变成了黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,“似乎”就再不能逃出.由于黑洞中的光无法逃逸,所以我们无法直接观测到黑洞.然而,可以通过测量它对周围天体的作用和影响来间接观测或推测到它的存在.黑洞引申义为无法摆脱的境遇.2011年12月,天文学家首次观测到黑洞“捕捉”星云的过程
 黑洞[1][2]的产生过程类似于中子星的产生过程;恒星的核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸.当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间.但在黑洞[3]情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质.由于高质量而产生的力量,使得 黑洞
任何靠近它的物体都会被它吸进去.黑洞开始吞噬恒星的外壳,但黑洞并不能吞噬如此多的物质,黑洞会释放一部分物质,射出两道纯能量——伽马射线.   也可以简单理通常恒星的最初只含氢元素,恒星内部的氢原子时刻相互碰撞,发生聚变.由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定.由于聚变,氢原子内部结构最终发生改变,破裂并组成新的元素——氦元素.接着,氦原子也参与聚变,改变结构,生成锂元素.如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成.直至铁元素生成,该恒星便会坍塌.这是由于铁元素相当稳定不能参与聚变,而铁元素存在于恒星内部,导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞.说它“黑”,是指它就像宇宙中的无底洞,任何物质一旦掉进去,就再不能逃出.跟白矮星和中子星一样,黑洞可能也是由质量大于太阳质量好几倍以上的恒星演化而来的.   当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了.这样,它再也没有足够的力量来承担起外壳巨大的重量.所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积无限小、密度无限大的星体.而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”诞生了.
恒星的时空扭曲改变了光线的路径,使之和原先没有恒星情况下的路径不一样.光在恒星表面附近稍微向内偏 黑洞
折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象.当该恒星向内坍塌时,其质量导致的时空扭曲变得很强,光线向内偏折得也更强,从而使得光线从恒星逃逸变得更为困难.对于在远处的观察者而言,光线变得更黯淡更红.最后,当这恒星收缩到某一临界半径(史瓦西半径)时,其质量导致的时空扭曲变得如此之强,使得光向内偏折得这么也如此之强,以至于光线再也逃逸不出去 .这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被拉回去.也就是说,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者,这样的区域称作黑洞.将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合.
黑洞图片(20张)  与别的天体相比,黑洞十分特殊.人们无法直接观察到它,科学家也只能对它内部结构提出各种猜想.而使得黑洞把自己隐藏起来的的原因即是弯曲的时空.根据广义相对论,时空会在引力场作用下弯曲.这时候,光虽然仍然沿任意两点间的最短光程传播,但相对而言它已弯曲.在经过大密度的天体时,时空会弯曲,光也就偏离了原来的方向.   在地球上,由于引力场作用很小,时空的扭曲是微乎其微的.而在黑洞周围,时空的这种变形非常大.这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球.观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术.   更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球.这样我们不仅能看见这颗恒星的“脸”,还同时看到它的“侧面”、甚至“后背”,这是宇宙中的“引力透镜”效应.
1.巨型黑洞   宇宙中大部分星系,包括我们居住的银河系的中心都隐藏着一个超大质量黑洞.这些黑洞质量大小不一,从约100万个太阳质量到大约100亿个太阳质量.   天文学家们通过探测黑洞周围吸积盘发出的强烈辐射推断这些黑洞的存在.物质在受到强烈黑洞引力下落时,会在其周围形成吸积盘盘旋下降,在这一过程中势能迅速释放,将物质加热到极高的温度,从而发出强烈辐射.黑洞通过吸积方式吞噬周围物质,这可能就是它的成长方式.   这项最新的研究采用了全世界最先进的地基观测设施,包括位于美国夏威夷莫纳克亚山顶,海拔4000多米处的北双子座望远镜,位于智利帕拉那山的南双子座望远镜,以及位于美国新墨西哥州圣阿古斯丁平原上的甚大阵射电望远镜.   2.大质量黑洞的成长   观测结果显示,出现在宇宙年龄仅为12亿年时的活跃黑洞,其质量要比稍后出现的大部分大质量黑洞质量小10倍.但是它们的成长速度非常快,因而现在它们的质量要比后者大得多.通过对这种成长速度的测算,研究人员可以估算出这些黑洞天体之前和之后的发展路径.   该研究小组发现,那些最古老的黑洞,即那些在宇宙年龄仅为数亿年时便开始进入全面成长期的黑洞,它们的质量仅为太阳的100到1000倍.研究人员认为这些黑洞的形成和演化可能和宇宙中最早的恒星有关.   天文学家们还注意到,在最初的12亿年后,这些被观测的黑洞天体的成长期仅仅持续了1亿到两亿年.   这项研究是一个已持续7年的研究计划的成果.特拉维夫大学主持的这项研究旨在追踪研究宇宙中最大质量黑洞的演化,并观察它们对宿主星系产生的影响.   3.黑洞的好处(别认为他只会是破坏者)   在用天文仪器探究后,发现在银河系核心部,有上10个黑洞,所产生的引力不堪设想,它们的能量相当大,可以产生一种能量束,产生一种气体,经数十亿年之后,便形成了星云,由星云便产生了行星.   4.已知最大的黑洞   美国加州大学伯克利分校华裔天文学家马中佩带领一个科研小组,最近发现了科学界迄今所知最大的两个黑洞.它们分别位于NGC 3842和NGC 4889星系,属银河系的中心地带,距离地球约2.7万光年,每个质量约为太阳的100亿倍.

什么是黑洞神秘的黑洞
提示:

什么是黑洞神秘的黑洞

分类: 教育/科学 >> 科学技术
解析:

黑洞是密度超大的星球,吸纳一切,光也逃不了.

(现在有科学家分析,宇宙中不存在黑洞,这需要进一步的证明,但是我们在学术上可以存在不同的意见)

首先,对黑洞进行一下形象的说明:

黑洞有巨大的引力,连光都被它吸引.黑洞中隐匿着巨大的引力场,这种引力大到任何东西,甚至连光,都难逃黑洞的手掌心。黑洞不让任何其边界以内的任何事物被外界看见,这就是这种物体被称为“黑洞”的缘故。我们无法通过光的反射来观察它,只能通过受其影响的周围物体来间接了解黑洞。据猜测,黑洞是死亡恒星或爆炸气团的剩余物,是在特殊的大质量超巨星坍塌收缩时产生的。



再从物理学观点来解释一下:

黑洞其实也是个星球(类似星球),只不过它的密度非常非常大, 靠近它的物体都被它的引力所约束(就好像人在地球上没有飞走一样),不管用多大的速度都无法脱离。对于地球来说,以第二宇宙速度(11.2km/s)来飞行就可以逃离地球,但是对于黑洞来说,它的第三宇宙速度之大,竟然超越了光速,所以连光都跑不出来,于是射进去的光没有反射回来,我们的眼睛就看不到任何东西,只是黑色一片。

因为黑洞是不可见的,所以有人一直置疑,黑洞是否真的存在。如果真的存在,它们到底在哪里?

黑洞的产生过程类似于中子星的产生过程;恒星的核心在自身重量的作用下迅速地收缩,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星球。但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。任何靠近它的物体都会被它吸进去,黑洞就变得像真空吸尘器一样

为了理解黑洞的动力学和理解它们是怎样使内部的所有事物逃不出边界,我们需要讨论广义相对论。广义相对论是爱因斯坦创建的引力学说,适用于行星、恒星,也适用于黑洞。爱因斯坦在1916年提出来的这一学说,说明空间和时间是怎样因大质量物体的存在而发生畸变。简言之,广义相对论说物质弯曲了空间,而空间的弯曲又反过来影响穿越空间的物体的运动。

让我们看一看爱因斯坦的模型是怎样工作的。首先,考虑时间(空间的三维是长、宽、高)是现实世界中的第四维(虽然难于在平常的三个方向之外再画出一个方向,但我们可以尽力去想象)。其次,考虑时空是一张巨大的绷紧了的体操表演用的弹簧床的床面。

爱因斯坦的学说认为质量使时空弯曲。我们不妨在弹簧床的床面上放一块大石头来说明这一情景:石头的重量使得绷紧了的床面稍微下沉了一些,虽然弹簧床面基本上仍旧是平整的,但其中央仍稍有下凹。如果在弹簧床中央放置更多的石块,则将产生更大的效果,使床面下沉得更多。事实上,石头越多,弹簧床面弯曲得越厉害。

同样的道理,宇宙中的大质量物体会使宇宙结构发生畸变。正如10块石头比1块石头使弹簧床面弯曲得更厉害一样,质量比太阳大得多的天体比等于或小于一个太阳质量的天体使空间弯曲得厉害得多。

如果一个网球在一张绷紧了的平坦的弹簧床上滚动,它将沿直线前进。反之,如果它经过一个下凹的地方 ,则它的路径呈弧形。同理,天体穿行时空的平坦区域时继续沿直线前进,而那些穿越弯曲区域的天体将沿弯曲的轨迹前进。

现在再来看看黑洞对于其周围的时空区域的影响。设想在弹簧床面上放置一块质量非常大的石头代表密度极大的黑洞。自然,石头将大大地影响床面,不仅会使其表面弯曲下陷,还可能使床面发生断裂。类似的情形同样可以宇宙出现,若宇宙中存在黑洞,则该处的宇宙结构将被撕裂。这种时空结构的破裂叫做时空的奇异性或奇点。

现在我们来看看为什么任何东西都不能从黑洞逃逸出去。正如一个滚过弹簧床面的网球,会掉进大石头形成的深洞一样,一个经过黑洞的物体也会被其引力陷阱所捕获。而且,若要挽救运气不佳的物体需要无穷大的能量。

我们已经说过,没有任何能进入黑洞而再逃离它的东西。但科学家认为黑洞会缓慢地释放其能量。著名的英国物理学家霍金在1974年证明黑洞有一个不为零的温度,有一个比其周围环境要高一些的温度。依照物理学原理,一切比其周围温度高的物体都要释放出热量,同样黑洞也不例外。一个黑洞会持续几百万万亿年散发能量,黑洞释放能量称为:霍金辐射。黑洞散尽所有能量就会消失。

处于时间与空间之间的黑洞,使时间放慢脚步,使空间变得有弹性,同时吞进所有经过它的一切。1969年,美国物理学家约翰 阿提 惠勒将这种贪得无厌的空间命名为“黑洞”。

我们都知道因为黑洞不能反射光,所以看患T谖颐堑哪院V泻诙纯赡苁且T抖制岷诘摹5⒐锢硌Ъ一艚鹑衔诙床⒉蝗绱蠖嗍讼胂笾心茄凇Mü蒲Ъ业墓鄄猓诙粗芪Т嬖诜洌液芸赡芾醋杂诤诙矗簿褪撬担诙纯赡懿⒚挥邢胂笾心茄凇?

霍金指出黑洞的放射性物质来源是一种实粒子,这些粒子在太空中成对产生,不遵从通常的物理定律。而且这些粒子发生碰撞后,有的就会消失在茫茫太空中。一般说来,可能直到这些粒子消失时,我们都未曾有机会看到它们。

霍金还指出,黑洞产生的同时,实粒子就会相应成对出现。其中一个实粒子会被吸进黑洞中,另一个则会逃逸,一束逃逸的实粒子看起来就像光子一样。对观察者而言,看到逃逸的实粒子就感觉是看到来自黑洞中的射线一样。

所以,引用霍金的话就是“黑洞并没有想象中的那样黑”,它实际上还发散出大量的光子。

根据爱因斯坦的能量与质量守恒定律。当物体失去能量时,同时也会失去质量。黑洞同样遵从能量与质量守恒定律,当黑洞失去能量时,黑洞也就不存在了。霍金预言,黑洞消失的一瞬间会产生剧烈的爆炸,释放出的能量相当于数百万颗氢弹的能量。

但你不要满怀期望地抬起头,以为会看到一场烟花表演。事实上,黑洞爆炸后,释放的能量非常大,很有可能对身体是有害的。而且,能量释放的时间也非常长,有的会超过100亿至200亿年,比我们宇宙的历史还长,而彻底散尽能量则需要数万亿年的时间

“黑洞”很容易让人望文生义地想象成一个“大黑窟窿”,其实不然。所谓“黑洞”,就是这样一种天体:它的引力场是如此之强,就连光也不能逃脱出来。

根据广义相对论,引力场将使时空弯曲。当恒星的体积很大时,它的引力场对时空几乎没什么影响,从恒星表面上某一点发的光可以朝任何方向沿直线射出。而恒星的半径越小,它对周围的时空弯曲作用就越大,朝某些角度发出的光就将沿弯曲空间返回恒星表面。

等恒星的半径小于一特定值(天文学上叫“施瓦西半径”)时,就连垂直表面发射的光都被捕获了。到这时,恒星就变成了黑洞。说它“黑”,是指任何物质一旦掉进去,就再不能逃出,包括光。实际上黑洞真正是“隐形”的,等一会儿我们会讲到。

那么,黑洞是怎样形成的呢?其实,跟白矮星和中子星一样,黑洞很可能也是由恒星演化而来的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料(氢),由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,直到最后形成体积小、密度大的星体,重新有能力与压力平衡。

质量小一些的恒星主要演化成白矮星,质量比较大的恒星则有可能形成中子星。而根据科学家的计算,中子星的总质量不能大于三倍太阳的质量。如果超过了这个值,那么将再没有什么力能与自身重力相抗衡了,从而引发另一次大坍缩。

这次,根据科学家的猜想,物质将不可阻挡地向着中心点进军,直至成为一个体积很小、密度趋向很大。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),正象我们上面介绍的那样,巨大的引力就使得即使光也无法向外射出,从而切断了恒星与外界的一切联系——“黑洞”诞生了。

与别的天体相比,黑洞是显得太特殊了。例如,黑洞有“隐身术”,人们无法直接观察到它,连科学家都只能对它内部结构提出各种猜想。那么,黑洞是怎么把自己隐藏起来的呢?答案就是——弯曲的空间。我们都知道,光是沿直线传播的。这是一个最基本的常识。可是根据广义相对论,空间会在引力场作用下弯曲。这时候,光虽然仍然沿任意两点间的最短距离传播,但走的已经不是直线,而是曲线。形象地讲,好像光本来是要走直线的,只不过强大的引力把它拉得偏离了原来的方向。

在地球上,由于引力场作用很小,这种弯曲是微乎其微的。而在黑洞周围,空间的这种变形非常大。这样,即使是被黑洞挡着的恒星发出的光,虽然有一部分会落入黑洞中消失,可另一部分光线会通过弯曲的空间中绕过黑洞而到达地球。所以,我们可以毫不费力地观察到黑洞背面的星空,就像黑洞不存在一样,这就是黑洞的隐身术。

更有趣的是,有些恒星不仅是朝着地球发出的光能直接到达地球,它朝其它方向发射的光也可能被附近的黑洞的强引力折射而能到达地球。这样我们不仅能看见这颗恒星的“脸”,还同时看到它的侧面、甚至后背!

“黑洞”无疑是本世纪最具有挑战性、也最让人激动的天文学说之一。许多科学家正在为揭开它的神秘面纱而辛勤工作着,新的理论也不断地提出。不过,这些当代天体物理学的最新成果不是在这里三言两语能说清楚的。有兴趣的朋友可以去参考专门的论著。

按组成来划分,黑洞可以分为两大类。一是暗能量黑洞,二是物理黑洞。暗能量黑洞主要由高速旋转的巨大的暗能量组成,它内部没有巨大的质量。巨大的暗能量以接近光速的速度旋转,其内部产生巨大的负压以吞噬物体,从而形成黑洞,详情请看宇“宙黑洞论”。暗能量黑洞是星系形成的基础,也是星团、星系团形成的基础。物理黑洞由一颗或多颗天体坍缩形成,具有巨大的质量。当一个物理黑洞的质量等于或大于一个星系的质量时,我们称之为奇点黑洞。暗能量黑洞的体积很大,可以有太阳系那般大。但物理黑洞的体积却非常小,它可以缩小到一个奇点。

黑洞吸积

Ramesh Narayan、Eliot Quartaer 文 Shea 译

黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。目前观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。

天体物理学家用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星——包括地球——也是在新形成的恒星周围通过气体和岩石的聚集而形成的。但是当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。

然而黑洞并不是什么都吸收的,它也往外边散发质子.

爆炸的黑洞

黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史迪芬·霍金于1974年做此语言时,整个科学界为之震动。黑洞曾被认为是宇宙最终的沉淀所:没有什么可以逃出黑洞,它们吞噬了气体和星体,质量增大,因而洞的体积只会增大,霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论。他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量,这种“霍金辐射”对大多数黑洞来说可以忽略不计,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。

奇妙的萎缩的黑洞

当一个粒子从黑洞逃逸而没有偿还它借来的能量,黑洞就会从它的引力场中丧失同样数量的能量,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。因此,黑洞将变轻变小。

沸腾直至毁灭

所有的黑洞都会蒸发,只不过大的黑洞沸腾得较慢,它们的辐射非常微弱,因此另人难以觉察。但是随着黑洞逐渐变小,这个过程会加速,以至最终失控。黑洞委琐时,引力并也会变陡,产生更多的逃逸粒子,从黑洞中掠夺的能量和质量也就越多。黑洞委琐的越来越快,促使蒸发的速度变得越来越快,周围的光环变得更亮、更热,当温度达到10^15℃时,黑洞就会在爆炸中毁灭。

关于黑洞的文章:

自古以来,人类便一直梦想飞上蓝天,可没人知道在湛蓝的天幕之外还有一个硕大的黑色空间。在这个空间有光,有水,有生命。我们美丽的地球也是其中的一员。虽然宇宙是如此绚烂多彩,但在这里也同样是危机四伏的。小行星,红巨星,超新星大爆炸,黑洞……

黑洞,顾名思义就是看不见的具有超强吸引力的物质。自从爱因斯坦和霍金通过猜测并进行理论推导出有这样一种物质之后,科学家们就在不断的探寻,求索,以避免我们的星球被毁灭。

也许你会问,黑洞与地球毁灭有什么关系?让我告诉你,这可大有联系,待你了解他之后就会明白。

黑洞,实际上是一团质量很大的物质,其引力极大(仡今为止还未发现有比它引力更大的物质),形成一个深井。它是由质量和密度极大的恒星不断坍缩而形成的,当恒星内部的物质核心发生极不稳定变化之后会形成一个称为“奇点”的孤立点(有关细节请查阅爱因斯坦的广义相对论)。他会将一切进入视界的物质吸入,任何东西不能从那里逃脱出来(包括光)。他没有具体形状,也无法看见它,只能根据周围行星的走向来判断它的存在。也许你会因为它的神秘莫测而吓的大叫起来,但实际上根本用不着过分担心,虽然它有强大的吸引力但与此同时这也是判断它位置的一个重要证据,就算它对距地球极近的物质产生影响时,我们也还有足够的时间挽救,因为那时它的“正式边界”还离我们很远。况且,恒星坍缩后大部分都会成为中子星或白矮星。但这并不意味着我们就可以放松警惕了(谁知道下一刻被吸入的会不会是我们呢?),这也是人类研究它的原因之一。

我们已经了解了他可怕的吸引力,但没人清楚被吸入后会是怎样的一片景象。对此,学者、科学家们也是莫衷一是,众说纷纭的。有人认为,被他吸入的物质会被毁灭。有的人则认为,黑洞是通往另一宇宙空间的通道。到底被吸入之后会如何我们也不得而知,也许只有那些被吸进去的物质才了解吧!

黑洞只是宇宙千千万万奥秘中的一员,但我们探求它的小部分秘密就不知花费了多少时间,一代人的力量是有限的,但千百万代人的力量汇聚在一起就一定会成功,相信我们以及我们的后代在不久的将来会将黑洞以至整个宇宙的奥秘完全探求出来。

恒星,白矮星,中子星,夸克星,黑洞是依次的五个密度当量星体,密度最小的当然是恒星,黑洞是物质的终极形态,黑洞之后就会发生宇宙大爆炸,能量释放出去后,又进入一个新的循环.

上一篇:清明节内容怎么写

下一篇:没有了

推荐阅读: