二项式定理的所有公式
二次项定理 a+b)n次方=C(n,0)a(n次方)+C(n,1)a(n-1次方)b(1次方)+…+C(n,r)a(n-r次方)b(r次方)+…+C(n,n)b(n次方)(n∈N*) C(n,0)表示从n个中取0个, 这个公式叫做二项式定理,右边的多项式叫做(a+b)n的二次展开式,其中的系数Cnr(r=0,1,……n)叫做二次项系数,式中的Cnran-rbr。 叫做二项展开式的通项,用Tr+1表示,即通项为展开式的第r+1项:Tr+1=Cnraa-rbr。奇数项二项式的和等于偶数项二项式的和,n为偶数时,有n+1项,中间的二项式系数最大 n为奇数时,中间两项的二项式系数相同,且最大。 二项式定理(英语:Binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。
二项式定理公式是什么?
二项式定理公式tk+1=Cnkan-kbk。 二项展开式的特点 1、项数展开式有共n+1项;系数:都是组合数,依次为Cn°,Cn,Cn2,Cn3等,指数的特点:a的指数由n一0(降幂);b的指数由0一n(升幂);a和b的指数和为n;利用二项式定理和展开式的通项公式可以求某些特殊项,如含某个幂的项、常数项、有理项、最火项等问题。 2、二项展开式中的各项的“二项式象数”与“条数”的区别,这是两个不同的概念,“二项式象数”仅指Cn0、Cn、.Cn这些组合数而言,不包括字母a、b所表示式子中的条数。通项Ckan-kbk是展开式中的第k+1项,而不是第k项。要灵活性、正确的应用二项展开式的通项公式。 通过探索二项式定理,感受由特殊到一般地认识事物的规律;在探究过程中,培养观察分析和综合、判断的能力。激发发现规律的积极性,鼓励勇于探索的精神。学生能够借助问题的引导,猜想发现、归纳并证明二项式定理,准确复述二项式定理的定义,并利用二项式定理准确展开式子。
二项式定理
二项式定理(英语:binomial theorem),又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。 该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。 它不是一个等差数列,也不是一个等比数列,但通过二项式定理的展开式,可以转化为按等差数列,由低次幂到高次幂递进求和,最终可推导至李善兰自然数幂求和公式的原形。 发现历程 在中国被称为「贾宪三角」或「杨辉三角」,一般认为是北宋数学家贾宪所首创。它记载于杨辉的《详解九章算法》(1261)之中。在阿拉伯数学家卡西的著作《算术之钥》(1427)中也给出了一个二项式定理系数表,他所用的计算方法与贾宪的完全相同。 在欧洲,德国数学家阿皮安努斯在他1527年出版的算术书的封面上刻有此图。但一般却称之为「帕斯卡三角形」,因为帕斯卡在1654年也发现了这个结果。无论如何,二项式定理的发现,在中国比在欧洲要早500年左右。
二项式定理是什么
二项式定理的意思是: 二项式定理,又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。 二项式定理是多项式乘法法则的推广,最早由牛顿给出,莱布尼茨在此基础上给出了多项式定理。 二项式定理知识点总结是如下: 1、二项式定理是由(a+b)^2,(a+b)^3,(a+b)^4等展开式归纳猜想而来,并由排列组合的方法证明了这一归纳。 2、二项式定理又称牛顿二项式定理,由艾萨克·牛顿于1664年、1665年间提出。该定理给出两个数之和的整数次幂诸如展开为类似项之和的恒等式。二项式定理可以推广到任意实数次幂,即广义二项式定理。 3、二项式定理的系数具有对称性。在二项式展开式中与首末两端“等距离”的两项的二项式系数相等;将它们绘成图像f(x),图像关于x=n/2对称,即x=n/2为图像f(x)的对称轴。