知识点:《富勒烯》 收集:叶秘巢 编辑:桂花
本知识点包括:1、富勒烯和石墨烯的区别 2、富勒烯水有害吗? 3、富勒烯是什么 4、石墨烯和富勒烯的区别 5、富勒烯负离子发生器, 。
《富勒烯》相关知识
富勒烯(Fullerene) 是一种碳的同素异形体.任何由碳一种元素组成,以球状,椭圆状,或管状结构存在的物质,都可以被叫做富勒烯.富勒烯与石墨结构类似,但石墨的结构中只有六元环,而富勒烯中可能存在五元环.
各种富勒烯的结构
富勒烯是于1985年发现的继金刚石、石墨和线性碳(carbyne)之后碳元素的第四种晶体形态.其中柱状或管状的分子又叫做碳纳米管或巴基管.C60分子具有芳香性,溶于苯呈酱红色.可用电阻加热石墨棒或电弧法使石墨蒸发等方法制得.C60有润滑性,可能成为超级润滑剂.金属掺杂的C60有超导性,是有发展前途的超导材料.C60还可能在半导体、催化剂、蓄电池材料和药物等许多领域得到应用.C60分子可以和金属结合,也可以和非金属负离子结合.当碱金属原子和C60结合时,电子从金属原子转到C60分子上,可形成具有超导性能的MxC60,其中M为K,Rb,Cs;x为掺进碱金属原子的数目.K3C60在18K以下是超导体,在18K以上是导体,掺进原子数可达6个,K6C60是绝缘体.C60是既有科学价值又有应用前景的化合物,在生命科学、医学、天体物理等领域也有定的意义.碳60(C60)和碳70(C70)是最常见的,也是能够量产的富勒烯,富勒烯的 碳纳米管,巴基管
成员还有C28、C32、C240、C540.C78、C82、C84、C90、C96等也有管状等其他形状.起初人们认为这种高度对称的完美分子只能在实验室的苛刻条件下或者是星际尘埃中存在,然而1992年美国科学家P. R. Buseck在用高分辨透射电镜研究俄罗斯数亿年前的地下的一种名为Shungites的矿石时,发现了C60和C70的存在,飞行时间质谱也证明了他们的结论,产生原因未知. 非常规富勒烯尽管结构上不稳定,但是在富勒烯研究中却非常重要.因为一方面许多非常规富勒烯是合成常规富勒烯的前体和中间产物,研究其结构和性质对于了解富勒烯的形成机理非常重要;另一方面非常规富勒烯的同分异构体数目是常规富勒烯的近100倍,如果能够通过某种方式对富勒烯进行修饰使其稳定下来,则无异于打开了一座新材料宝库的大门.2000年,分子纳米结构与纳米技术院重点实验室的科研人员在日本工作期间,首次发现将两个金属钪置入富勒烯碳笼时,可以有效地稳定非常规富勒烯C66(Nature, 408, 426, 2000).回到中国后,他们与厦门大学的科学家合作,又合成分离并表征了通过外接Cl原子而稳定下来的非常规富勒烯衍生物C50Cl10(Science 304, 699-699, 2004).最近,该实验室科研人员又相继合成了通过富勒烯内包金属碳化物的稳定内嵌富勒烯Sc2C2@C68(Angew. Chem. Int. ed. 45, 2107, 2006)和外接氢原子的非常规富勒烯衍生物C64H4(J. Am. Chem. Soc. 128, 6605, 2006).这些结果说明非常规富勒烯可以通过多种方式稳定下来,为研究富勒烯结构特征和探索更多的富勒烯材料奠定了基础.
物理性质的应用
润滑剂和研磨剂C60具有特殊的圆球形状,是所有分子中最圆的分子;另外,C60的结构使其具有特殊的稳定性.在分子水平上,单个C60分子是异常坚硬的,这使得C60可能成为高级润滑剂的核心材料.C60分子一出世,就有人提议用它来作“分子滚珠”,制成润滑剂.将C60完全氟化得到的C60F60是一种超级耐高温材料,这种白色粉末状物质是比C60更好的优良润滑剂,可广泛应用于高技术领域.另外,C60分子的特殊形状和极强的抵抗外界压力的能力使其有希望转化成为一类新的超高硬度的研磨材料.一种有希望的方法是将C60直接转化为金刚石,这可通过在室温下加高压来实现.1992年初,法国格雷诺布尔(Grenoble)低温研究中心的雷古埃罗等人在英国《自然》杂志上报道,通过在室温下对C60分子施以压强达200亿帕的快速非静压,可将其瞬间转化为大量人工钻石晶体.雷古埃罗等已为这种由C60快速有效生产金刚石的方法申请了专利,这使得C60可作为一种研磨材料而具有潜在应用价值,人们可以采用爆炸或其他冲击波的方法对富勒烯施加高压,生产出符合工业标准的低成本金刚石. CVD金刚石膜 富勒烯的另一潜在的应用是它们可作为金刚石薄膜生长的均匀成核位置而起重要作用.富勒烯材料的独特性质之一是它们在较低温度下升华,对于C60,其升华点大约是600℃,这使得富勒烯在不规则形状表面上的气体沉积覆盖相对来说很容易实现.另外,由于富勒烯易溶于像苯和甲苯这样的极性有机分子溶剂,因而可以在室温下将复杂表面直接浸于制备好的溶液中,待溶剂挥发后就留下一层富勒烯分子薄膜. 1992年,美国西北大学的一个研究小组声称他们发现了一种用富勒烯结晶出金刚石薄膜的简单方法.他们使用包含C70分子的富勒烯,先在硅表面形成富勒烯薄层,然后用带电粒子轰击它,导致有利于金刚石形成的分子结构,使用化学气相沉积(CVD)方法,通过天然气与氢气的混合气体,形成许多微小的金刚石.科学家预测,对这种方法加以改进也许能够生长出电子应用中所需要的类似大块单晶的金刚石薄膜,这将使得生长金刚石单晶的梦想成为现实.据说在多晶体生长中,C70的应用使得在硅表面衬底上金刚石的生成提高了10个量级. 金刚石薄膜在军事方面具有许多应用价值,如作为装甲车表面的抗冲击覆盖层,用于制成光学(X射线,粒子束)窗口,半导体晶片,高硬度表面齿轮,金刚石-纤维合成材料,以及高温和防辐射电子器件等. 高强度碳纤维 1991年日本电气公司的饭岛发现了一种管状碳——巴基管,巴基管具有独特的几何结构和奇妙的导电性质,同时具有高抗张强度和高度热稳定性.巴基管的这种特殊的电学和机械性能使其具有巨大的应用价值.高性能纤维对于要求很高的强度-重量比的结构设计产生了革命性的影响,尤其是在需要耐高温,或者在能控制材料的电磁性能的应用领域.目前的石墨纤维已具有很高的强度、很强的柔韧性以及耐高温性能.巴基管材料具有高度的热稳定性和易变性,而且比目前的碳素纤维具有更大的抗张强度,加之其导电性能可由其结构加以调节,因而巴基管是一种比石墨纤维性能更优越的碳纤维,甚至还可能发展出强度更高、更轻巧的结构,这样使得巴基管可能在电子器件和航空、航天等空间技术领域具有巨大的应用价值. 1993年,日本电气公司基础研究室的艾贾安和饭岛在细微的巴基管中填入了铅,从而制成了迄今世界上最细的丝,这种丝只有两三个原子那么粗,具有纳米尺度.有人推测这种巴基细丝可能在电子器件制造上得到应用.理论计算表明,巴基管可吸附大小适合其内径的任意分子.科学家希望通过改变石墨层片卷曲成管的方式等方法调节巴基管的直径,使其有选择性地吸收分子,从而改变其电子及机械性能.科学家正试图制成单晶巴基管,并用巴基管造出分子水平的微型零件用于医学或其它目的.富勒烯作为一种潜在的新碳素材料已得到普遍重视,其应用领域也将不断开拓. 高能轰击粒子 C60能够得到或失去电子形成离子,带电巴基球可以用作物理碰撞的高能轰击粒子.1992年9月,法国奥塞(Or-say)核物理研究所与厄普撒拉(Uppsala)大学的研究人员用线性加速器将C60离子加速至具有近5000万电子伏的能量.由于C60离子的质量和体积均较大,高能C60离子束轰击固体靶时不能穿透固体,而是停留在表浅的位置,从而将大量的能量施放在固体表面,可以使固体在加速的同时获得巨大的能量,有助于研究高能离子轰击固体靶时产生的物理变化.C60离子轰击实验开创了物理碰撞研究的新领域.另外,C60离子束还有可能在分子束诱发核聚变的研究中得到应用. 富勒烯及其衍生物物理性质的应用是多方面的.早在1991年,阿莱芒等人发现C60络合物可以在没有金属存在的情况下表现出铁磁性特征,从而有希望开拓磁性记忆材料的一个新方向.用C60还能在CaAs晶体基质上制成C60-K3C60异质结膜,并可将其用于微电子器件等方面.随着研究的深入,富勒烯独特的物理性质将为其应用开辟一个广阔的领域.
化学性质的应用
富勒烯电化学 C60具有完美对称的足球结构,反应在其电子能级上具有较高的简并度.理论计算表明,C60分子的电子能级简并度最高可达五重.C60的最低未占据分子轨道(LUMO)是三重简并的tlu态,使得C60具有很高的电负性,它能够接受电子而形成带负电子的阴离子.高度结构对称性与分子轨道简并度结合起来,使得C60分子具有非常丰富的氧化还原性质. 由于C60分子具有较高的电离势(C60的第一电离能约为7.6eV),因此一般说来,C60的电化氧化是较为困难的,虽然也有人报道C60和C70的电化学不可逆氧化反应,但更常见的是富勒烯的电化还原.豪夫勒(R. E. Haufler)和斯莫利等首先采用循环伏安特性方法在溶液中产生了离子形式的C60.他们在实验中使用了玻璃状碳钮扣电池,并用铂丝作为反电极.C60进行的这个还原反应是可逆的,显示出使用电化学方法生产稳定的“富勒烯化合物(fulleride)”盐的可能性.这可能导致新材料的发现,并可能制成一类新的可充电电池.C70和C60的电化学行为几乎是相同的,在合适的溶剂中C60能够被还原成六价离子,与理论预测的C60能接受6个电子于很困难的匀质大块化合物的还原中. 巴德(A. J. Bard)等首先进行了铂电极上C60膜的电化学研究,这种膜的电化学性质是较为复杂的,并具有不可逆性.查伯(Y. Chabre)等人采用全固态电化学电池和聚合物电解质成功地将锂掺入C60中,实验确定在连续加入电子过程中LixC60中的x值为0,5,2,3,4和12,最后的Li∶C的比例达到相当于Li12C60即LiC5,这是Li嵌入石墨化合物中的饱和值.查伯等还研究了固态C60电极上钠的电化学嵌入过程.C60的固态电化学研究为生产掺杂富勒烯化合物提供了新的途径. C60还容易发生电化学加氢反应.C60电极能够通过氢而发生电化学充电反应,而生成的C60Hx可以以很高的效率放电.富勒烯的伯奇(Birch)还原反应和催化氢化反应得到的产物很多,有C60H18、C60H36、C60H56及完全氢化的C60H60等,还有C70的加氢产物C70H46.富勒烯加氢化合物非常稳定,具有广阔的应用前景.利用它们能够安全地大量收集和储存氢的性质,作为储存氢气的材料,这可以应用在氢的纯化、吸收、氢燃烧发动机以及氢—空气燃料电池中.富勒烯对氢气的存储和释放为研究氢的压缩、纯化、热泵以及制冷的新方法打开了大门. 加氢富勒烯是一种碳氢化合物,可作为洁净的燃烧迅速的燃料,有望作为火箭推进剂而用于航空航天领域.另外,利用加氢富勒烯储氢引起的化学及热力学性质,制成可充电电池,用来替代镍-镉(Ni-Cd)电池中的镉电极,也可用来替代镍-金属氢化物电池中的金属氢化物以储存电能.完全氢化的富勒烯能最大限度地存储能量.从实验结果看,一类新的无毒、轻便、高效的富勒烯氢化物电池将很快问世. 催化剂 催化剂有着广泛的应用,如石油精炼和化学过程等方面.富勒烯可以作为一类新的催化剂材料的基础.斯莫利提出可以在富勒烯分子的中心空隙加入一些已知具有催化性能的金属原子,如铂(pt)、钯(pd)等,制成一类新的催化剂,在这种催化剂中,催化性原子被碳笼保护起来. 1992年,日本的研究人员用C60制成了一类含钯的高催化性能复合物,这是在室温下用C60的苯溶液与钯的络合物混合制成的,每个C60分子与6个钯原子配位.这是第一个发现的在分子水平上具有规则形状的催化剂载体,并且已发现它能在正常温度和压强下催化二苯乙炔的加氢反应;这也是第一个发现的由一种材料的数个原子组成的团簇催化化学反应,因为催化剂通常只在很大质量下才起作用.富勒烯还可以作为催化剂载体而与其他催化剂结合,催化其他的反应.假如其他类似以富勒烯为基础的催化剂也具有如此之高的催化活性,那么这些基于富勒烯的催化剂将在那些既需要高效率又要低质量或小体积的方面得到应用. 抗癌药物 美国亚特兰大埃莫里(Emory)大学医学院的病毒药物学家斯辛纳齐(R. F. Schinazi)和他的同事们发现,巴基球对一种关键性的HIV病毒酶有杀伤作用,而不伤害宿生细胞.HIV蛋白酶是一种导致艾滋病的病毒,巴基球能够抑制HIV的生长,使其对人类细胞失去感染作用.科学家认为,巴基球虽然不能用来治疗艾滋病,但它可能具有药用价值.这种富勒烯能够消除HIV病毒,阻止HIV蛋白酶的作用而不损害被感染的细胞本身,它在人类被HIV感染的三种免疫细胞中具有抗病毒能力,而且还对这种病毒的反向转录酶起作用,因此能够抑制HIV对细胞的感染.虽然目前巴基球还不能作为一种有用的药物,但这将是巴基球在生物学上的首次应用;而且科学家认为,富勒烯将为研究抗癌药物提供潜在而有趣的线索. 富勒烯具有十分丰富的化学内涵,富勒烯及其衍生物在化学方面的应用是十分广阔的.除作为催化剂载体、制成高能电池及抑制病毒外,还可以利用富勒烯能有选择性地吸收某些种类气体的性质,将其在工业上用作气体杂质的去除剂,此外还可以作为有机溶剂以及在医学上作为影像剂,这方面的前景是广阔的.
在电化学方面的应用
非线性光学器件 实验和理论研究表明,C60和C70等富勒烯都是良好的非线性光学材料,C60/C70混合物(C70约占10%)的非线性光学系数约为1.1×10-9esu,C76甚至还具有光偏振性.富勒烯分子中不存在对非线性光学性能有干扰作用的碳—氢键和碳-氧键,与其他非线性光学材料相比,性能更加优越.美国西北大学的研究者们发现C60薄膜具有很高的二阶非线性光学系数,显示出在非线性光学器件方面的应用价值.C60薄膜具有很高的光学效率,这一性质使得C60在激光光学通信和光学计算机方面有着重要的潜在应用,并有望在短期内付诸实现.科学家还发现,C60和C70溶液可以作为光学限制器,这种溶液只允许低强度的光通过,当光强增强时,溶液很快变得不透光,其饱和阈值与其他任何已知的光学限制材料相比差不多或更好.英国科学家还报道过,富勒烯被多孔矿物质俘获并经蓝色激光照射后,成为一种光致发光材料,尽管这一工作尚没有在其他实验室内重复出来,但揭示出它可能用来制作能发射任何频率光的激光器,已经发现许多大的富勒烯分子具有手性特征,这种手征性预示着非线性光学响应的可能.生产和分离出大量的大富勒烯分子将在高阶非线性光学效应方面取得突破.预计富勒烯作为一种良好的非线性光学材料可能很快投入应用. 光导体 光导材料是复印机、传真机和激光打印机的基本部分,旧的光导材料使用硒作为感光剂,现在较为先进的有机光导聚合物已经代替了硒材料.美国杜邦公司的研究人员发现用1%的C60(可能是C60和C70的混合物)掺杂的PVK聚合物是一类全新的高性能光导体,类似的产品已经应用于静电复印技术中.这种光导材料具有良好的性质,其图象分辨率相当或优于其他材料,而寿命远远高于含硒材料,其性能实际上已经可以与最好的商用光导体相比拟.这使得掺杂富勒烯材料在印刷及光通信等方面将获得巨大的应用. 超导材料 掺杂C60超导体的发现是超导领域的又一重大成果,这种超导体具有相对较高的临界温度,掺杂C60超导体的临界温度不仅远远高于所有的有机分子超导体,而且也大大高于以前发现的金属和合金超导体,只比现在炙手可热的氧化物陶瓷超导体低. 如果掺杂C60超导体的临界温度目前尚不能与高温氧化物超导体相比的话,那么这种超导体在其他方面却具有许多更为优越的性质,而这些性质都直接影响到超导体的实际应用.富勒烯超导体最大的优点在于这种化合物容易加工成所需要的各种形状;同时由于它们是三维分子超导体,各向同性,使得电流可以在各个方向均等地流动.我们知道,氧化物陶瓷超导体是一种层状材料,表现为各向异性,在每层平面内和与平面垂直的方向上导电性质不同,同时这种陶瓷材料难于加工成线形或其他所需要的形状,给实际应用造成困难.同时,富勒烯化合物超导体还具有较高的临界磁场和临界电流密度,理论分析和一些实验结果显示,在更大的富勒烯分子掺杂化合物中可能大幅度提高超导临界温度.良好的性质和潜在的高临界温度为富勒烯超导体的应用创造了条件. 掺杂富勒烯超导体的可能应用包括磁悬浮列车,基于约瑟夫逊结和更新更快设计原理的高速计算机开关器件、长距离电力输送、超导发动机和发电机、作物理研究的大型磁铁(如超导超级对撞机)、超导计算机的电子屏蔽以及基于超导量子干涉器件(SQUID)的电子设备等方面. 掺杂的C60化合物显示超导电性,理论计算已经证明,不掺杂的C60是一种直接能隙半导体,由于C60分子在其格点位置作高速无序自由转动,使C60固体成为继Si,Ge和GaAs之后的又一种新型半导体材料.日本三菱电气公司的研究人员已经用C60制成了一种新型富勒烯半导体.随着研究的深入,富勒烯及其衍生的材料走向应用已指日可待. C60及富勒烯家族的诞生是20世纪80年代的重大发现之一,具有重要意义的是,这些神奇的全碳分子及其衍生的物质显示新颖奇特的物理化学性质,它们首先是作为一种可实用化的新材料而出现的.
知识拓展:
1: 【富勒烯是什么物质?谁发现的?比如富勒烯是什么颜色、状态的物质?是否是化合物?是自然存在的还是人造的?】
知识要点归纳:
克罗托等人之所以能够勾画出C60的分子结构,富勒的启示起了关键性作用,因此他们一致建议,用布克米尼斯特·富勒(Buckminster Fuller)的姓名加上一个词尾-ene来命名C60及其一系列碳原子簇,称为Buckminsterfullerene,简称Fullerene,中译名为富勒烯.
近年来,科学家们发现,除金刚石、石墨外,还有一些新的以单质形式存在的碳.其中发现较早并已在研究中取得重要进展的是C60分子.C60分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯.C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形.其相对分子质量约为720.处于顶点的碳原子与相邻顶点的碳原子各用近似于sp2杂化轨道重叠形成σ键,每个碳原子的三个σ键分别为一个五边形的边和两个六边形的边.碳原子杂化轨道理论计算值为sp2.28,每个碳原子的三个σ键不是共平面的,键角约为108°或120°,因此整个分子为球状.每个碳原子用剩下的一个p轨道互相重叠形成一个含60个π电子的闭壳层电子结构,因此在近似球形的笼内和笼外都围绕着π电子云.分子轨道计算表明,足球烯具有较大的离域能.C60具有金属光泽,有许多优异性能,如超导、强磁性、耐高压、抗化学腐蚀、在光、电、磁等领域有潜在的应用前景. 碳纳米管是典型的富勒烯,又称巴基管,是一种管状结构的碳原子簇,直径约几纳米,长约几微米.据理论计算,碳纳米管纤维的强度是钢的100倍,而质量仅为钢的1/7,如果能做成碳纤维,将是理想的轻质高强度材料.碳纳米管还具有极强的储气能力,可以在燃料电池储氢装置上.
C60是一种碳原子簇.它有确定的组成,60个碳原子构成像足球一样的32面体,包括20个六边形,12个五边形.由于这个结构的提出是受到建筑学家富勒(Buckminster Fuller)的启发.富勒曾设计一种用六边形和五边形构成的球形薄壳建筑结构.因此科学家把C60叫做足球烯,也叫做富勒烯,因为32面体的每个顶点上的碳原子跟三个其它的碳原子相邻.如同苯环上每个碳原子都是sp2杂化.p轨道在环的上、下形成π键一样,足球烯每个顶角上的碳原子也都满足sp2杂化的要求,(类似萘环上两个不带氢原子的碳原子)剩余的p轨道在C60分子的外围和内腔形成π键.所以C60是一种烯. 因为C60是石墨、金刚石的同素异形体,因此有科学家联想到用廉价的石墨作原料合成C60,也有人想到它含有苯环单元的结构,或许可以选用苯作原料合成C60.这些设想最后都实现了.现在,1000g苯可以制得3gC70和C60的混合物(它们的比率为0.26~5.7). 大自然鬼斧神工的巧合,这60个C原子在空间进行排列时,形成一个化学键最稳定的空间排列位置,恰好与足球表面格的排列一致.
物理性质
颜色与性状
C60在室温下为紫红色固态分子晶体,有微弱荧光.
分子大小
C60分子的直径约为7.1埃(1埃= 10^ -10 米即一百亿分之一米).
密度
C60的密度为1.68g/cm^3.
溶解性
C60不溶于水等强极性溶剂,在正己烷、苯、二硫化碳、四氯化碳等非极性溶剂中有一定的溶解性.
导电性
C60常态下不导电.因为C60大得可以将其他原子放进它内部,并影响其物理性质,因而不可导电.另外,由于C60有大量游离电子,所以若把可作β衰变的放射性元素困在其内部,其半衰期可能会因此受到影响.
超导性
1991年,赫巴德(Hebard)等首先提出掺钾C60具有超导性,超导起始温度为18K,打破了有机超导体(Et)2Cu[N(CN)2]Cl超导起始温度为12.8K的纪录.不久又制备出Rb3C60的超导体,超导起始温度为29K.掺杂C60的超导体已进入高温超导体的行列.研究显示,这类材料是以晶格里的电洞来传导电流(类似p型半导体),若加入其它分子(例如三溴甲烷)来拉长晶格间距,还可以有效地提升其超导相变温度至117K.中国在这方面的研究也很有成就,北京大学和中国科学院物理所合作,成功地合成了K3C60和Rb3C60超导体,超导起始温度分别为8K和28K.有科学工作者预言,如果掺杂C240和掺杂C540,有可能合成出具有更高超导起始温度的超导体.
磁性
阿勒曼(Allemand)等人在C60的甲苯溶液中加入过量的强供电子有机物四(二甲氨基)乙烯(TDAE),得到了C60(TDAE)C0.86的黑色微晶沉淀,经磁性研究后表明是一种不含金属的软铁磁性材料.居里温度为16.1K,高于迄今报道的其它有机分子铁磁体的居里温度.由于有机铁磁体在磁性记忆材料中有重要应用价值,因此研究和开发C60有机铁磁体,特别是以廉价的碳材料制成磁铁替代价格昂贵的金属磁铁具有非常重要的意义.
化学性
周环反应
富勒烯的[6,6]键可以与双烯体或双烯亲和体反应,如D-A反应.[2+2]环加成可以形成四元环,如苯炔.1,3偶极环加成反应可以生成五元环,被称作Prato反应.富勒烯与卡宾反应形成亚甲基富勒烯.周环反应
加氢还原
富勒烯氢化有几个容易的方法.氢化富勒烯如C60H18,C60H36.然而,完全氢化的C60H60仅仅是假设存在因为分子张力过大.高度氢化富勒烯不稳定,富勒烯与氢气直接反应在高温条件下的直接反应会导致笼结构崩溃,而形成的多环芳烃.
羟基化反应
富勒烯可以通过羟基化反应得到富勒多醇(fullerenols)和富勒醇.其水溶性取决于其(富勒醇)分子中羟基数的多少.一种方法是富勒烯与稀硫酸和硝酸钾反应可生成C60(OH)15.另一种方法是在稀氢氧化钠溶液的催化下反应由TBAH增加24 到26个羟基.羟基化反应也有过用无溶剂氢氧化钠与过氧化氢和富勒烯反应的报道.用过氧化氢与富勒烯的反应合成C60(OH)8,羟基的最大数量,可以达到36至40个.
氧化还原反应
氧化还原反应: 在光照的条件下将C60与O2反应生成环氧化物C60O2,但这种环氧化物不稳定,用矾土分离时能还原成C60.
加成反应
C60可以与氢或卤素单质进行加成.把其完全氢化便得绒毛球烷(Fuzzyball),化学式为C60H60(加成进的氢原子有可能C60在笼内也可能在C60外部).烷基自由基R可与C60反应生成RC60加和物,RC60可生成C60直接键和哑铃状二聚体RC60-C60R.
亲电加成
富勒烯也可以发生亲电反应.可以在富勒烯球外加成24个溴原子.最多亲电加成纪录保持者是C60F48.根据氟硅烷的结构(在硅元素中)还难以预测C60F60是否可能有一些氟原子在“endo”位置(指富勒烯内部),这种化合物是比起球型更类似于一个管状的富勒烯分子.
配位反应
富勒烯在有机金属化学中作为配体.[6,6]双键是缺电子的,通常与金属成键的η= 2(配位化学中的常数).键合模式如η= 5或η=6可以因作为配体的球状富勒烯改变而改变.富勒烯和硫羰基钨W(CO)6在环己烷溶液中,阳光直接照射下反应生成的(η²-C60)5 W(CO)6.
内嵌反应
指通过化学手段选择性地切断富勒烯骨架上的碳碳键来制备开孔富勒烯的反应.开孔后就可能把一些小分子装到碳球中,如氢分子、氦、锂等.第一个开孔富勒烯是在1995由Wudl等报道的.
反加成
反加成反应即Retro-Additions(RA).研究表明,通过RA消去,取代基实现了他们的目的后便与富勒烯主体分离.
与金属的反应
C60与金属的反应分为两种情况:一种是金属被置于C60碳笼的内部;另一种是金属位于C60碳笼的外部: 1)C60碳笼内配合物生成反应.C60碳笼为封闭的中空的多面体结构,其内腔直径为7.1埃,内部可嵌入原子、离子或小分子形成新的团簇分子,C60 + AC60(A).Smalley等人现已发现能与C60生成C60(A)的金属有:K、Na、Cs、La、Ba、Sr、U、Y、Ce、Sm、Eu、Gd、Tb、Ho、Th等.除金属外,He、Ne等惰性气体及LiF、LiCl、NaCl等极性分子亦可移置C60笼中. 2)C60碳笼外键合反应.Ohno等人发现能与C60键合的金属有:V、Fe、Co、Ni、Rh、Cu、La、Yb、Ag等.
颜色反应
C60可以溶于二硫化碳中.颜色呈紫红色.
2: 关于富勒烯的碳的个数指的是最大会有几个碳
知识要点归纳:
除C60外,具有封闭笼状结构的还可能有C28、C32、C50、C70、C84……C240、C540等,统称为富勒烯(Fullerene).在数学上,富勒烯的结构都是以五边形和六边形面组成的凸多面体.最小的富勒烯是C20,有正十二面体的构造.没有22个顶点的富勒烯.之后都存在C2n的富勒烯,n= 12,13,14 .在之些小的富勒烯中,都存在着五边形相邻结构.C60是第一个没有相邻的五边形的富勒烯,下一个是C70.在更高的富勒烯中,普遍满足孤立五边形规则(Isolated pentagon rule,IPR),即在n>12时,不存在相邻的五边形结构.
3: 富勒烯就是足球烯(碳60)吗?它有什么用?
知识要点归纳:
是的
特性:
1.硬度比钻石硬
2.延展性比钢强100倍
3.能导电,导电性比铜强,重量只有铜的六分之一
4.它的成分是碳,所以可从废弃物中提炼
具体介绍请参见以下资料
4: 富勒烯是若美欣吗?
知识要点归纳:
若美欣的精华液含富勒烯C60~
5: 富勒烯是一种化合物吗
知识要点归纳:
富勒烯不是化合物
C60(富勒烯)分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯(C60这种物质是由C60分子组成的,而不是由原子构成的)C60是单纯由碳原子结合形成的稳定分子,它具有60个顶点和32个面,其中12个为正五边形,20个为正六边形.其相对分子质量约为720.
猜你喜欢:
1:富勒烯和石墨烯的区别
提示:人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯石墨烯出现在实验室中是在2004年,当时,英国...
2:富勒烯水有害吗?
提示:富勒烯及其衍生物无毒、无遗传毒性,上世纪90年代早期至今的所有富勒烯的毒性研究的工作,认为自富勒烯发现以来都没有明显的证据表明C60是有毒性的。国外研究人员发现小鼠吸入C60(OH)24或纳米C60并没有毒副作用,而同样情况下将石英颗粒注入小...
3:富勒烯是什么
提示:富勒烯(英语:Fullerene)是一种完全由碳组成的中空分子,形状呈球型、椭球型、柱型或管状。富勒烯在结构上与石墨很相似,石墨是由六元环组成的石墨烯层堆积而成,而富勒烯不仅含有六元环还有五元环,偶尔还有七元环。 1985年英国化学家哈罗德·...
4:石墨烯和富勒烯的区别
提示:石墨烯和富勒烯的区别:碳原子排列方式不一样。 石墨烯(Graphene)是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨。英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦钉诺沃肖洛...
5:富勒烯负离子发生器,
提示:富勒烯负离子发生器,是指利用纳子富勒烯作为放电电极,富勒烯是采用纳米技术制造的电触媒材料,是一种接近超导的材料,电阻几乎等于零。在电离子通过该材料时,会产生强大的共振效应,极利于电离子的游离析出,不像传统的离子释放材料(普通碳...